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Abstract. A complete choice of generators of the centre of the enveloping algebras of real
quasisimple Lie algebras of orthogonal type, for arbitrary dimension, is obtained in a unified
setting. The results simultaneously include the well known polynomial invariants of the pseudo-
orthogonal algebras so(p, q), as well as the Casimirs for many non-simple algebras such as
the inhomogeneous iso(p, q), the Newton–Hooke and Galilei type, etc, which are obtained by
contraction(s) starting from the simple algebras so(p, q). The dimension of the centre of the
enveloping algebra of a quasisimple orthogonal algebra turns out to be the same as for the
simple so(p, q) algebras from which they come by contraction. The structure of the higher-
order invariants is given in a convenient ‘pyramidal’ manner, in terms of certain sets of ‘Pauli–
Lubanski’ elements in the enveloping algebras. As an example showing this approach at work,
the scheme is applied to recovering the Casimirs for the(3+ 1)-kinematical algebras. Some
prospects on the relevance of these results for the study of expansions are also given.

1. Introduction

The role of Casimir (or polynomial) invariants of Lie algebras is rather important in physics
as well as in mathematics. They generate the centre of the universal enveloping algebraUg

of g. Physically, in any theory with a symmetry algebra, they appear as being related to
conserved quantities, as they commute with all generators. The work of Racah [1] solved
the problem of obtaining the Casimir invariants associated to a simple Lie algebra and, in
particular, Gel’fand [2] explicitly found a particular basis of the centre of the enveloping
algebra of so(N + 1); the case for the pseudo-orthogonal Lie algebras so(p, q) (in fact,
for all simple classical algebras) has also been dealt with in an explicit form by Perelomov
and Popov [3]. The number of independent Casimirs for simple Lie algebras is equal to
the rank of the algebra; these Casimirs can be chosen as homogeneous polynomials in the
generators, of degreesdi which are related to the so-called exponents of the simple compact
real form of the Lie algebra. For non-simple algebras, some general results have been
established; for instance, a formula giving the number of primitive independent Casimir
operators of any Lie algebra can be found in [4], and a complete description of the theory
of polynomial and/or rational invariants appears in [5]. These results allow us to deduce
all invariants related to any particular Lie algebra on a case-by-case basis, but do not give
directly a general perspective of the structure of the invariants associated to a complete
family of ‘neighbour’ algebras, as for instance provided by a given Lie algebra and (some
of) its contractions: the general problem of relating the universal enveloping algebra of a
given Lie algebra and one of its possible contractions is not yet solved in full generality,
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although complete results are available for special cases. For instance, Casimirs for a large
family of contractions of sl(3,C) are given in [6], the question of graded contractions of
Casimir operators is addressed within a general framework in [7] and the behaviour under
contraction of bilinear invariant forms, which is directly related to the quadratic Casimirs, is
studied within the graded contraction approach in [8]. This problem has definite interest in
physics, where contractions are related to some kind of ‘approximation’ and understanding
how invariants behave under contraction and under the ‘inverse’ expansion or deformation
process are illuminating aspects of the theory.

The aim of this paper is to obtain, within such a ‘simultaneous’ approach, all the
Casimir invariants for every Lie algebra in a rather large family, the so-called quasisimple
or Cayley–Klein (CK) algebras of orthogonal type [9, 10]. This family includes the real
simple pseudo-orthogonal Lie algebras so(p, q) of the Cartan seriesBl andDl as well
as many non-simple Lie algebras which can be obtained by contracting the former ones.
The complete family of quasisimple orthogonal algebras can be obtained starting from the
compact algebra so(N + 1) in two different ways. One possibility is to use a ‘formal
transformation’ which introduces numbers outside the real field (either complex, double or
dual (Study) numbers) [11], and another uses the theory of graded contractions [12, 13],
without leaving the real field. Adopting this last point of view, it is shown that a particular
solution of theZ⊗N2 graded contractions of so(N + 1) leads to the CK algebras as anN -
parametric family of real Lie algebras denoted soω1,...,ωN (N + 1) [14]. The Lie algebra
structure of the above family together with a listing of its most interesting members are
briefly described in section 2.

When allωa are different from zero,soω1,...,ωN (N+1) is a simple algebra (isomorphic to
so(p, q) with p+ q = N +1), whose rank isl = [ N+1

2 ] (the square brackets here denoting,
as usual, the integer part). The dimension of the centre of its universal enveloping algebra
equals the rankl of the algebra, and it is generated by a set of homogeneous polynomials
(Casimir operators) of orders 2, 4, . . . ,2[N2 ], and an additional Casimir of orderl whenN+1
is even. In section 3 we present the explicit structure of the Casimir invariants corresponding
to any algebra in the family soω1,...,ωN (N+1). These invariants are deduced starting from the
original approach of Gel’fand but where the necessary modifications are introduced in order
to get expressions which cover simultaneously all algebras in the family soω1,...,ωN (N + 1),
whether the constantsωa are different from zero or not. This means that the behaviour
of these Casimirs upon any contractionωa → 0 is built-in in the formalism, and they do
not require any rescaling which should be made when the contraction is performed in the
Inönü–Wigner sense. Every Casimir we obtain is non-trivial for any contracted algebra
(whether or not the constantsωa are different from zero); furthermore, these constitute a
complete set of Casimirs for CK algebras.

The main tool is provided by some elements in the enveloping algebra, labelled by
an even number 2s of indices,Wa1a2...asb1b2...bs , which are homogeneous of orders in the
generators. In the case of the (3+1) Poincaré algebra, the components of the Pauli–Lubanski
vector (whose square is the fourth-order Casimir) are in factW -symbols with four indices.
In this way, the Casimir invariants are presented in a pyramidal intrinsic form since each
Wa1a2...asas+1b1b2...bsbs+1 can be written in terms ofW ’s with two less indicesWa1a2...asb1b2...bs ,
and ultimately, in terms ofW -symbols with two indices, which are simply the generators
themselves.

The problem of giving explicit expressions in terms of generators for Casimirs in
CK algebras has also been approached by Gromov [15] by applying the above-mentioned
formal transformation to the Casimir invariants of so(N + 1) obtained by Gel’fand: those
expressions should be equivalent to those we shall obtain (as giving a possibly different
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basis for the centre of the enveloping algebra), but the explicit introduction of theW ’s
makes the choice in this paper a lot simpler and easily tractable. The general expressions
for Casimirs written directly in terms of generators, as in [15], are overall more cumbersome
to apply to specific Lie algebras than those involvingW ’s, especially whenN increases.

In section 4 the results are illustrated by writing the general expressions of the invariants
associated to soω1,...,ωN (N + 1) for N = 2, 3, 4, 5; in particular, forN = 4 we focus on the
(3+1)-kinematical algebras [16] thus obtaining a global view of the limit transitions among
their corresponding Casimir operators. The way of getting the Casimirs in the Minkowski
space starting from those in the de Sitter space by letting the universe ‘radius’R →∞ is
well known; this familiar example appears in our scheme as a rather particular case, yet
it may facilitate grasping the scope of the results we obtain, which includes a much larger
family of algebras than the well known kinematical ones.

In the conclusions (section 5) we make some brief comments on the role of these results
for the study of expansions.

2. The family of quasisimple orthogonal algebras

Consider the real Lie algebra so(N + 1) whose 1
2N(N + 1) generators�ab (a, b =

0, 1, . . . , N, a < b) satisfy the following non-vanishing Lie brackets:

[�ab,�ac] = �bc [�ab,�bc] = −�ac [�ac,�bc] = �ab a < b < c. (2.1)

Through aZ⊗N2 graded contraction process, a family of contracted real Lie algebras can
be deduced from so(N + 1). The general solution was given in [17]; it includes a range
of algebras, from the simple Lie algebras so(p, q) to the Abelian algebra of the same
dimension. For reasons which will become clear shortly, we restrict ourselves here to a
particular subfamily [14], whose members have been called quasisimple algebras [9] because
they are very ‘near’ the simple ones. They depend onN real coefficientsω1, . . . , ωN and the
generic member of this family will be denoted soω1,...,ωN (N+1). Their non-zero commutators
are given by

[�ab,�ac] = ωab�bc [�ab,�bc] = −�ac [�ac,�bc] = ωbc�ab a < b < c

(2.2)

without summing over repeated indices. Note that all Lie brackets involving four different
indicesa, b, c, d as [�ab,�cd ] are equal to zero.

The two-index coefficientsωab are written in terms of theN basicωa by means of:

ωab = ωa+1ωa+2 · · ·ωb a, b = 0, 1, . . . , N a < b (2.3)

therefore

ωa−1a = ωa a = 1, . . . , N (2.4)

ωac = ωabωbc a < b < c. (2.5)

Each coefficientωa can be reduced to+1,−1 or 0 by simply rescaling the initial generators;
then the family soω1,...,ωN (N+1) embraces 3N Lie algebras called CK algebras of orthogonal
type or quasisimple orthogonal algebras. Some of them can be isomorphic; a useful
isomorphism is:

soω1,ω2,...,ωN−1,ωN (N + 1) ' soωN ,ωN−1,...,ω2,ω1(N + 1). (2.6)

The algebra soω1,...,ωN (N + 1) has a (vector) representation by(N + 1) × (N + 1) real
matrices, given by

�ab = −ωabeab + eba (2.7)
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whereeab is the matrix with a single non-zero entry, 1, in the rowa and columnb. In this
realization, any elementX ∈ soω1,...,ωN (N + 1) satisfies the equation:

XIω + IωtX = 0 (2.8)

whereIω is the diagonal matrix

Iω = diag(+, ω01, ω02, . . . , ω0N) = diag(+, ω1, ω1ω2, . . . , ω1 · · ·ωN) (2.9)

and tX means the transpose matrix. We state this property by saying thatX is an Iω-
antisymmetric matrix; when allωa = 1, this reduces to the standard antisymmetry for the
generators of so(N + 1).

The CK algebras soω1,...,ωN (N + 1) are the Lie algebras of the motion groups ofN -
dimensional symmetrical homogeneous spacesX0:

X0 ≡ SOω1,...,ωN (N + 1)/SOω2,...,ωN (N) (2.10)

where the subgroupH0 ≡ SOω2,...,ωN (N) is generated by the Lie subalgebrah0 =
〈�ab, a, b = 1, . . . , N〉. Each spaceX0 has constant curvature equal toω1 and its principal
metric can be reduced to the form diag(+, ω2, ω2ω3, . . . , ω2 · · ·ωN) at each point.

In the sequel we identify the most interesting Lie algebras appearing within
soω1,...,ωN (N + 1) according to the cancellation of someωa [18, 19]. In particular, the
kinematical algebras [16] associated to different models of spacetime are CK algebras. In
the list below, when we explicitly say that if some coefficient is equal to zero it will be
understood that the remaining ones are not. It is remarkable that each caseωa = 0 can be
regarded as an Inönü–Wigner contraction limit, where some parameterεa → 0 [14, 20].

(1) ωa 6= 0 ∀a. They are the pseudo-orthogonal algebras so(p, q) with p + q = N + 1
of the Cartan seriesBl or Dl . The quadratic form invariant under the fundamental vector
representation is given by the matrixIω (2.9).

(2) ω1 = 0. They are inhomogeneous pseudo-orthogonal algebras iso(p, q) with
p + q = N which have a semidirect sum structure:

so0,ω2,...,ωN (N + 1) ≡ tN � soω2,...,ωN (N) ≡ iso(p, q).

The ‘signature’ of the metric invariant under soω2,...,ωN (N) is (+, ω12, ω13, . . . , ω1N). The
most interesting cases are the Euclidean algebra iso(N) which is recovered once for
(ω1, ω2, . . . , ωN) = (0,+, · · · ,+), and the Poincaré algebra iso(N − 1, 1) which appears
several times, for instance, for(ω1, ω2, . . . , ωN) = {(0,−,+, · · · ,+), (0,+, · · · ,+,−),
(0,+, · · · ,+,−,−,+, · · · ,+), (0,−,−,+, · · · ,+), (0,+, · · · ,+,−,−)}. From the
isomorphism (2.6) is clear that the CK algebras withωN = 0 are also of this kind and
similarly for the next types.

(3) ω1 = ω2 = 0. They are twice inhomogeneous pseudo-orthogonal algebras iiso(p, q)

with p + q = N − 1:

so0,0,ω3,...,ωN (N + 1) ≡ tN � (tN−1� soω3,...,ωN (N − 1)) ≡ iiso(p, q).

The signature of soω3,...,ωN (N − 1) is (+, ω23, ω24, . . . , ω2N). Hence the Galilean algebra
iiso(N − 1) is associated to(0, 0,+, · · · ,+).

(4) ω1 = ωN = 0. They are ii′so(p, q) algebras withp + q = N − 1:

so0,ω2,...,ωN−1,0(N + 1) ≡ tN � (t ′N−1� soω2,...,ωN−1(N − 1)) ≡ ii ′so(p, q)

where so(p, q) acts ontN through the vector representation while it acts ont ′N−1 through
the contragredient of the vector representation. Thus, ii′so(N − 1) is the Carroll algebra
with coefficients(0,+, · · · ,+, 0) [16].
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(5) ωa = 0, a 6= 1, N . They are thetr (so(p, q)⊕so(p′, q ′)) algebras [21]. In particular,
for ω2 = 0 we havet2N−2(so(p, q) ⊕ so(p′, q ′)) with p + q = N − 1 andp′ + q ′ = 2,
which include the expanding and oscillating Newton–Hooke algebras forq = 0 [16].

(6) When all coefficientsωa = 0 we find the flag space algebra so0,...,0(N + 1) ≡
i . . . iso(1) [9].

3. The Casimir invariants

We first recall the necessary definitions and tools [4, 5]. Then we summarize the approach
and the results of Gel’fand [2] for so(N+1). Afterwards we compute the Casimir invariants
for the CK algebras soω1,...,ωN (N + 1).

3.1. Definition of polynomial invariants

In this paragraph,g will denote any Lie algebra, of dimensionD. LetUg be theenveloping
algebra of g generated by all polynomials in the generatorsXµ µ = 1, . . . , D andS the
symmetric algebraof g isomorphic toR[αµ;µ = 1, . . . , D], this is, the ring of polynomials
in D commutative variablesαµ. A generic polynomial is denoted asp = p(α1, . . . , αD).

The adjoint action, adXµ : g −→ g

adXµ(Xν) = [Xµ,Xν ] (3.1)

is extended to an ‘adjoint action’ ofg on Ug and also to another action onS:

adXµ : u ∈ Ug −→ [Xµ, u] ≡ Xµu− uXµ ∈ Ug (3.2)

adXµ : p = p(α1, . . . , αD) ∈ S −→ Oµ(p) ≡
D∑

ν,σ=1

Cσµ,νασ
∂p

∂αν
∈ S (3.3)

whereCσµ,ν are the structure constants ofg.
The invariants inUg andS under the adjoint action ofg are the following subsets:

UIg ≡ {u ∈ Ug|[Xµ, u] = 0, ∀Xµ ∈ g} ⊂ Ug (3.4)

SI ≡ {p ∈ S|Oµ(p) = 0, ∀Xµ ∈ g} ⊂ S (3.5)

and the elements ofUIg are calledpolynomial or Casimir invariantsof g. According to
the general results described in [4, 5] the two main steps to obtain the Casimir invariants
are:
• to compute the subsetSI of S;
• to apply to each element ofSI the canonical mappingφ : S → Ug defined for any

monomial by symmetrization:

φ(αµ1 . . . αµr ) =
1

r!

∑
π∈5r

Xπ(µ1) · · ·Xπ(µr ) (3.6)

where5r is the group of permutations onr items, and extended toS by linearity.
A general result providing an upper bound for the number of independent invariants

for g is as follows.

Proposition 1.[5]. The maximal number of algebraically independent Casimir invariantsτ

associated to any Lie algebrag is

τ 6 dim(g)− r(g) (3.7)
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where dim(g) is the dimension ofg, andr(g) is the rank of the antisymmetric matrixMg

whose elements are

(Mg)µ,ν =
D∑
σ=1

Cσµ,νασ . (3.8)

For the simple Lie algebras so(p, q), p + q = N + 1, the number of algebraically
independent Casimir invariants is equal to [N+1

2 ], the rank of the algebra. In this case, (3.7)
holds as an equality,τ = dim(g) − r(g), and this can be checked by computing the rank
r(g) of matrix (3.8) (see below). However, it is not necessary thatg is simple in order
to have the equalityτ = dim(g) − r(g). For instance, the Poincaré algebra iso(3, 1) has
two algebraically independent Casimirs (quadratic and fourth order), and in this case the
equality also holds; the same happens for all the inhomogenous pseudo-orthogonal algebras
iso(p, q) which appear in the CK family whenω1 = 0 or ωN = 0 and the remaining ones
are different from zero. In the extreme contracted case of the Abelian algebra,r(g) = 0
andτ = dim(g) saturates inequality (3.7) again.

3.2. The Gel’fand method forso(N + 1)

Now we restrict our attention to our the compact real Lie algebra so(N+1), as a distinguished
member of the CK family of algebras, whose generators will be denoted as in (2.1).
Hereafter, when referring to equations in section 3.1, the obvious changesXµ → �ab,
αµ → αab should be understood. Instead of solving the set of differential equations (3.5)
in order to get the elements ofSI , Gel’fand considered the following antisymmetric matrix
associated to so(N + 1):

T =



0 α10 α20 . . . αN−10 αN0

α01 0 α21 . . . αN−11 αN1

α02 α12 0 . . . αN−12 αN2
...

...
...

. . .
...

...

α0N−1 α1N−1 α2N−1 . . . 0 αNN−1

α0N α1N α2N . . . αN−1N 0

 (3.9)

whereαab = −αba. He obtained the Casimir invariants of so(N + 1) from the coefficients
of the characteristic polynomial of the matrixT :

det(T − λI) = 0 (3.10)

whereI is the(N+1)× (N+1) identity matrix. Due to the structure of the matrixT , these
coefficients are sums of all minors of the same order associated to the main diagonal ofT ;
the last coefficient is of course the determinant ofT [2]. It turns out that this determinant
is equal to zero whenN is evenN = 2l, and it is a perfect square of an homogeneous
expression of orderl in the variablesαab when N is odd N = 2l − 1. The Casimirs
themselves are obtained through the replacementαab → �ab and further symmetrization on
the variablesαab in these coefficients.

When N = 2l is even, Gel’fand obtainedl such invariants,C1, . . . , Cs , . . . , Cl for
so(N + 1) which are homogeneous polynomials of order 2s in the generators:

Cs =
N∑

i1,i2,...,i2s−1,i2s=0

�i1i2�i2i3 . . . �i2s−1i2s�i2s i1 s = 1, 2, . . . , l. (3.11)
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WhenN is odd,N = 2l − 1, besides (3.11) there is another invariant coming from the
determinant ofT , which is a perfect square of an homogeneous expression in the generators
of order l denoted simply asC:

C =
N∑

i0,i1,...,iN=0

εi0i1...iN�i0i1�i2i3 . . . �iN−1iN (3.12)

whereεi0i1...iN is the completely antisymmetric unit tensor. In both expressions the relation
�ab = −�ba is understood.

The degreesdi of these Casimirs follow also from their relation with the exponents of
SO(N + 1); for this connection see [22]. The Poincaré polynomial

∑
i bi t

i of the compact
real form of any simple Lie group space has the form

∏
i (1+ tai ), and the exponentsai

appearing in this product are related to the degreesdi of the Casimirs of the Lie algebra
of the group byai = 2di − 1. It is thus possible to foresee the degrees of Casimirs of
simple Lie algebras, provided the exponents are known. These follow from the knowledge
of real homology of the group spaces, and since Pontrjagin and Hopf the mathematicians
have known that as far as real homology is concerned, compact forms of simple Lie groups
behave like products of odd-dimensional spheres, whose dimensions are the exponentsai .
For each such sphereSai , there is anai-skew form in the Lie algebra, which is related to
a (ai + 1)/2-multilinear symmetric form, the link being provided by the construction of
Chevalley and Weil (see, e.g. [23]). And finally, each such multilinear form is dual to a
Casimir of the same degree.

3.3. The case of orthogonal CK algebras

We now proceed to implement this scheme for the CK algebras. Before going into detail,
let us first comment upon the results. Forany CK algebra soω1,...,ωN (N + 1) in the CK
family, the maximal number of algebraically independent Casimirs (i.e. the dimension of
the centre of the universal enveloping algebra of soω1,...,ωN (N +1) on its own), is still given
by the same value [N+1

2 ] as in the simple case, no matter how many constantsωi are equal
to zero or not. This property of having exactly [N+1

2 ] algebraically independent Casimirs
justifies thequasisimplename allocated to the CK algebras: although the CK set contains
non-simple algebras, all members in each family have the same number of algebraically
independent Casimirs. This is the main reason of restricting ourselves, in this paper, from
the general set of graded contractions of so(N + 1) to the subfamily of CK algebras. This
property is no longer true for other contractions of so(N + 1) beyond the CK family, and
the dimension of the centre of the universal enveloping algebra of such contracted algebras
is in general larger than [N+1

2 ], as the extreme case of the Abelian algebra, with as many
primitive Casimirs as generators, clearly shows.

As a first step we write the analogous ofT (3.9)only for the pseudo-orthogonal so(p, q)
algebraswith all ωa 6= 0 (but without reducing them to±1), and compute the minors
separately. Afterwards, we arrange the details, by introducing some factors depending on
the coefficientsωa in such way that all contractionsωa → 0 are always well defined and
do not originate a trivial result for any of the Casimirs found.

Consider first the CK algebras with allωa 6= 0. Recall that the generators of
soω1,...,ωN (N + 1) have been taken as�ab only for a < b. If all ωa 6= 0 we can extend this
set and introduce the (linearly dependent) new generators by defining�ba with a < b, and
their correspondingαba as follows

if a < b �ba := − 1

ωab
�ab αba := − 1

ωab
αab (3.13)
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so that the commutation relations (2.2) can be written in the standard form

[�ab,�lm] = δam�lb − δbl�am + δbmωlm�al + δalωab�bm (3.14)

which is the familiar form of the commutation relations for an so(p, q) algebra, with the non-
degenerate metric tensor (2.9). In this special caseωa 6= 0 we associate to soω1,...,ωN (N +1)
the matrix (3.9) denotedTω1,...,ωN which now reads

Tω1,...,ωN =



0 − α01
ω01

− α02
ω02

. . . − α0N−1

ω0N−1
− α0N
ω0N

α01 0 − α12
ω12

. . . − α1N−1

ω1N−1
− α1N
ω1N

α02 α12 0 . . . − α2N−1

ω2N−1
− α2N
ω2N

...
...

...
. . .

...
...

α0N−1 α1N−1 α2N−1 . . . 0 − αN−1N

ωN−1N

α0N α1N α2N . . . αN−1N 0


. (3.15)

This matrix satisfies the property

Tω1,...,ωN Iω + IωtTω1,...,ωN = 0 (3.16)

where Iω is the diagonal matrix (2.9). Recalling that (2.8), we say thatTω1,...,ωN is an
Iω-antisymmetric matrix.

Whenall the constantsωa are different from zero, it is clear that the Casimir invariants
for soω1,...,ωN (N + 1) are the coefficients of the characteristic polynomial coming from
equation (3.10) whereT is replaced byTω1,...,ωN . In order to get them we have to calculate
the determinant of a generic diagonal submatrix, which will have the same structure as
(3.15) but with a non-consecutive subset of indices, sayTωi1i2 ,...,ωiK−1iK

. Due to property
(3.16) it is easy to show that for an oddK the determinant is always zero. Therefore,
only determinants for evenK = 2s might be different from zero. For future convenience,
we will denote any arrangement of 2s indices taken from 012. . . N in increasing order as
a1 < a2 < · · · < as < b1 < b2 < · · · < bs .

We now define some symbols of 2s indicesWa1a2...asb1b2...bs , for s = 1, 2, . . . , l as:

W2
a1a2...asb1b2...bs

:= ωa1bsωa2bs−1 . . . ωasb1 det[Tωa1a2 ,...,ωas b1 ,...,ωbs−1bs
]. (3.17)

This definition is justified since the r.h.s. of (3.17) is a perfect square. The set of coefficients
ωab multiplying the determinant assures that the final expressions we are going to obtain
are non-trivial even after the limitsωa → 0. Inserting theseω factors turns out to be
equivalent to the usual rescaling made in the contraction of Casimir invariants by means of
an In̈onü–Wigner contraction.

The 2s-indexW-symbol is given in terms of the(2s − 2)-indexW-symbol through

Wa1a2...asb1b2...bs =
s∑

µ=1

(−1)µ+1αaµbsWa1a2...âµ...asb1b2...b̂s

+
s−1∑
ν=1

(−1)s+ν+1ωasbν αbνbsWa1a2...asb1b2...b̂ν ...b̂s
(3.18)

where theW-symbols on the r.h.s. of the equation have 2s − 2 indices, those obtained by
removing the two indices marked with a caretaµ, bs or bν, bs from the set of 2s indices
a1a2 . . . asb1b2 . . . bs .

TheW-symbols give rise to the elements ofSI (3.5) and the canonical mappingφ (3.6)
transforms them into invariants of the enveloping CK algebra (3.4). The symmetrization
implied by action ofφ on W reduces to a simple substitutionαab → �ab since all
generators appearing in the products of theW-symbols commute. Once the substitution of
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the variablesαab by the generators�ab has been performed, we will denoteW := φ(W).
Now Wab,Wa1a2b1b2, . . . , are elements in the universal enveloping algebra of the CK Lie
algebra. Their structure can be most clearly presented in a recursive way. Fora < b, let:

Wab := �ab (3.19)

thenW -symbols with four indicesa1 < a2 < b1 < b2 are given in terms of those with two
by:

Wa1a2b1b2 = �a1b2Wa2b1 −�a2b2Wa1b1 + ωa2b1�b1b2Wa1a2 (3.20)

and furtherW -symbols with six, eight,. . . , 2s indices,Wa1a2...asb1b2...bs (with a1 < a2 <

· · · < as < b1 < b2 < · · · < bs), are given in terms of those with two less indices by means
of the relations:

Wa1a2...asb1b2...bs =
s∑

µ=1

(−1)µ+1�aµbsWa1a2...âµ...asb1b2...b̂s

+
s−1∑
ν=1

(−1)s+ν+1ωasbν�bνbsWa1a2...asb1b2...b̂ν ...b̂s
(3.21)

until we end up withW -symbols with 2l indices.
By using theseW ’s we can produce expressions for the Casimir invariants of the CK

algebras soω1,...,ωN (N + 1). The key to this adaptation is to profit from the presence of the
constantsωa. When contraction is dealt with through an Inönü–Wigner-type contraction, a
suitable rescaling of the non-contracted Casimir by some power of the contraction parameter
is required to give a non-trivial well defined Casimir for the contracted algebra after the
contraction limit. This is made unnecessary in our approach, which has this rescaling
automatically built-in.

We now give the expressions, in terms of theseW ’s, for the [N+1
2 ] Casimir operators

in the general CK Lie algebra soω1,...,ωN (N + 1).

Theorem 2.The l = [ N+1
2 ] independent polynomial Casimir operators of the CK Lie algebra

soω1,...,ωN (N + 1) can be written as:
• [ N2 ] invariantsCs , s = 1, . . . , [ N2 ] of order 2s. We give the first, second, and then the

general expression:

C1 =
N∑

a1,b1=0
a1<b1

ω0a1ωb1NW
2
a1b1

(3.22)

C2 =
N∑

a1,a2,b1,b2=0
a1<a2<b1<b2

ω0a1ω1a2ωb1(N−1)ωb2NW
2
a1a2b1b2

(3.23)

Cs =
N∑

a1,a2,...,as ,b1,b2,...,bs=0
a1<a2<···<as<b1<b2<···<bs

ω0a1ω1a2. . .ω(s−1)asωb1(N−s+1)ωb2(N−s+2). . .ωbsNW
2
a1a2...asb1b2...bs

.

(3.24)

• WhenN + 1 is even, there is an extra CasimirC of order l = N+1
2 :

C = W012...N . (3.25)
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In these expressions anyωaa should be understood asωaa := 1. It is easy to see that even
in the most contracted CK algebra, the flag space algebra, so0,...,0(N + 1), these Casimirs
are not trivial. In fact, the term in (3.24) with theW -symbol whose first group ofs indices
are consecutive and start from 0, and whose last group ofs indices are also consecutive and
end withN , W 2

012...(s−1)(N−s+1)...(N−2)(N−1)N , is the only term whoseω factor is equal to 1,
and therefore the only one which survives in the CasimirCs for the so0,...,0(N + 1) algebra.

Therefore, theorem 2 provides a set of [N+1
2 ] non-trivial independent Casimirs for any

Lie algebra in the CK family. The question now is whether there exists any other Casimir
which cannot be obtained by this contraction process. To answer this we should analyse
the upper boundτ (3.7).

Proposition 3. The rank of the matrix defined by (3.8) for soω1,...,ωN (N + 1) is N2/2 for
evenN and(N2− 1)/2 for oddN , regardless of the specific values of the coefficientsωa.

Proof. We first read off from (2.2) the structure constants of the generic CK algebra:

Cmnab,ac = δmbδncωab Cmnab,bc = −δmaδnc Cmnac,bc = δmaδnbωbc (3.26)

where the conditionsa < b < c andm < n will be assumed without saying. The result
stated in proposition 3 follows from the existence of structure constantsCmnab,bc = −δmaδnc
which areω-independent, and non-zero for all algebras in the CK family. Let us start with
the case of an evenN = 2l and the1

2N(N+1)× 1
2N(N+1) matrixMg (3.8). We consider

the minor obtained by eliminating the rows and columns associated to the followingl = N/2
variablesαab:

α0Nα1N−1α2N−2 . . . αl−2l+2αl−1l+1 (3.27)

this is, forα0N we discard the row and column with elements(Mg)0N,kl and(Mg)kl,0N (∀kl),
etc. The dimension of this submatrix isN2/2. It can be checked that in each row and in
each column there is always asingleα of the sequence (3.27) without any factorω. Then
by permuting rows and columns we can arrange the minor in order to get all thoseα’s in
the main diagonal, so its determinant is (up to a sign), a monomial:

α
2(N−1)
0N α

2(N−3)
1N−1 α

2(N−5)
2N−2 · · ·α2·3

l−2l+2α
2·1
l−1l+1. (3.28)

Since this term isω-independent, this minor is non-zero for any CK algebra. A similar
procedure is applied for an oddN = 2l−1. Now we take out the rows and columns linked
to the l = (N + 1)/2 variables:

α0Nα1N−1α2N−2 . . . αl−2l+1αl−1l (3.29)

obtaining in this way a minor of dimension(N2 − 1)/2. By ordering rows and columns,
we get all variables appearing in the sequence (3.29) placed in the main diagonal; the
determinant is (again up to a sign) the monomial:

α
2(N−1)
0N α

2(N−3)
1N−1 α

2(N−5)
2N−2 · · ·α2·4

l−3l+2α
2·2
l−2l+1 (3.30)

and the result follows. �
Hence, as dim(g) = 1

2N(N + 1), the upper bound for the number of algebraically
independent Casimirs in any CK algebra turns out to be [N+1

2 ] which coincides with the
upper bound for the simple algebras where allωa 6= 0. Since we have just obtained that
number of Casimirs, we conclude that the equality in formula (3.7) holds forall CK algebras
and theorem 2 givesall the Casimirs for the CK family. We remark that the flag algebra
so0,...,0(N+1) is on the borderline for this behaviour: if contractions are carried out beyond
this algebra, the rank of the matrix in proposition 3 might not be given by the same values.
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This can be easily seen: for the Abelian algebra in1
2(N + 1)N dimensions, which can of

course be reached by contracting so(N + 1), all generators are central elements.
If we define now therank of a Lie algebra in the CK family as the number of

algebraically independent Casimir invariants associated to it, then theorem 2 shows that
all the CK algebras SOω1,...,ωN (N+1) have the same rank:N/2 if N is even and(N+1)/2
if N is odd.

We recall that the first Casimir (3.22) fors = 1 is the quadratic invariant related to the
Killing–Cartan form in the case of a simple algebra. If a ‘Killing–Cartan’ form is defined
for all CK algebras as usual:

βab,cd ≡ β(�ab,�cd) = Trace(ad�ab · ad�cd) =
N∑

m,n,p,q=0

C
pq

ab,mnC
mn
cd,pq (3.31)

we find, by using the structure constants (3.26), that in the basis�ab this ‘Killing–Cartan’
form of the CK algebra soω1,...,ωN (N + 1) is diagonal, and its non-zero components are

βab,ab = −2(N − 1)ωab a, b = 0, . . . , N a < b. (3.32)

When all theωa 6= 0 the Killing–Cartan form is regular (the algebra is simple or semisimple
in the exceptional caseD2), so we can write:

C1 =
N∑

a,b=0

ω0aωbN�
2
ab =

N∑
a,b=0

ω0N

ωab
�2
ab = −2(N − 1)ω0N

N∑
a,b;c,d=0

βab,cd�ab�cd . (3.33)

This is the known relation giving the quadratic Casimir as the dual of the Killing–Cartan
form, which holds for the case of non-zeroωa; otherwise the Killing–Cartan form is
degenerate, and the last term in (3.33) is indeterminate. However, the structure of this
equation shows that in the limit of someωa → 0, while the Killing–Cartan form (3.32)
degenerates, the CasimirC1 remains well defined, because the impossibility of inverting the
matrixβab,cd conspires with the factorω0N to produce a well defined limit forC1. Similarly,
higher-order Casimir invariants are dual to the polarized form of a symmetric multilinear
form.

The algebraic structure behind theW ’s, which allows simple expressions for the higher-
order Casimirs, should be worth studying. For instance, let us consider the commutation
relations among a generator�ab and a symbolWa1a2...asb1b2...bs . There are two possibilities.

(1) If both indicesa andb, or none, appear in the sequence{a1a2 . . . asb1b2 . . . bs}, then
the Lie bracket [�ab,Wa1a2...asb1b2...bs ] is zero.

(2) If only one index a or b belongs to{a1a2 . . . asb1b2 . . . bs}, then we have:

[�ab,Wa1a2...asb1b2...bs ] = (−1)p+1

√
ωab

ωa1bsωa2bs−1 . . . ωasb1

ωa′1b′s ωa
′
2b
′
s−1
. . . ωa′sb′1

Wa′1a
′
2...a

′
sb
′
1b
′
2...b

′
s

(3.34)

where the new set of indices{a′1a′2 . . . a′sb′1b′2 . . . b′s} is obtained by first writing the sequence
{a, b; a1a2 . . . asb1b2 . . . bs} in increasing order, and then dropping the common index. In
the factor(−1)p+1, p means the minimum number of transpositions needed to bring the
sequence{ab; a1a2 . . . asb1b2 . . . bs} into increasing order; for instance, in the sequence
{13; 0234} ≡ {0124} p = 3, while in {15; 1234} ≡ {2345} p = 4. Notice that allωa′b′ in
the denominator cancel, and leave under the square root a perfect square product ofω’s.

Repeated use of this procedure would give the commutation relations between twoW -
symbols. We do not write here the general expressions, but some examples are given in the
next section.
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4. Examples

4.1. Results forN = 2,3,4,5

In the sequel we elaborate upon the results of the above section by writing explicitly the
Casimir invariants of soω1,...,ωN (N+1) up toN = 5. These expressions should be compared
with those obtained in any approach giving the invariants directly in terms of the generators
�ab (without using theW -symbols) which are cumbersome as soon asN grows.

4.1.1.N = 2. There is only one invariant:

C1 = ω2�
2
01+�2

02+ ω1�
2
12. (4.1)

4.1.2.N = 3. There are two invariants and the first relevantW -symbol (3.20) appears:

C1 = ω2ω3�
2
01 +ω3�

2
02 +�2

03
+ω1ω3�

2
12 +ω1�

2
13

+ω1ω2�
2
23

(4.2)

C ≡ W0123= ω12�23W01−�13W02+�03W12

= ω2�23�01−�13�02+�03�12.
(4.3)

4.1.3.N = 4. From a physical point of view this is a rather interesting case since the CK
family soω1,...,ω4(5) contains the (3+1)-kinematical algebras. There are two invariants:

C1 = ω2ω3ω4�
2
01 +ω3ω4�

2
02 +ω4�

2
03 +�2

04
+ω1ω3ω4�

2
12 +ω1ω4�

2
13 +ω1�

2
14

+ω1ω2ω4�
2
23 +ω1ω2�

2
24

+ω1ω2ω3�
2
34

(4.4)

C2 = ω24W
2
0123+ ω23W

2
0124+W 2

0134+ ω12W
2
0234+ ω02W

2
1234 (4.5)

where from (3.20) we have

W0123= ω12�23�01−�13�02+�03�12

W0124= ω12�24�01−�14�02+�04�12

W0134= ω13�34�01−�14�03+�04�13

W0234= ω23�34�02−�24�03+�04�23

W1234= ω23�34�12−�24�13+�14�23.

(4.6)

As an application of (3.34) we write the non-zero commutation relations among the 10
generators of soω1,ω2,ω3,ω4(5) and the fiveW -symbols (4.6):

[�04,W0123] = −ω02W1234 [�03,W0124] = ω02W1234 [�02,W0134] = −ω02W1234

[�14,W0123] = ω12W0234 [�13,W0124] = −ω12W0234 [�12,W0134] = ω12W0234

[�24,W0123] = −W0134 [�23,W0124] = W0134 [�23,W0134] = −ω23W0124

[�34,W0123] = W0124 [�34,W0124] = −ω34W0123 [�24,W0134] = ω24W0123

[�01,W0234] = ω01W1234 [�01,W1234] = −W0234 [�12,W0234] = −W0134

[�02,W1234] = W0134 [�13,W0234] = ω23W0124 [�03,W1234] = −ω23W0124

[�14,W0234] = −ω24W0123 [�04,W1234] = ω24W0123. (4.7)

As these expressions show, theW -symbols can be thought of as a kind of ‘Pauli–
Lubanski’ components for Lie algebras in the CK family. To see this, notice that when
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the constants(ω1, ω2, ω3, ω4) ≡ (0,−1,+1,+1), the CK Lie algebra so0,−1,+1,+1(5) is
isomorphic to the Poincaré algebra iso(3, 1). In this case there arefive W -symbols; due
to the vanishing of the constantω1, W1234 is missing in the expression of the fourth-order
Casimir (4.5), and the remainingfour are the components of the standard Pauli–Lubanski
operator (see (4.18) below).

From (4.7) it is straightforward to find the Lie brackets of theW -symbols among
themselves:

[W0123,W0124] = ω12�01W0134+ ω12�02W0234+ ω02�12W1234

[W0123,W0134] = −ω13�01W0124+ ω12�03W0234+ ω02�13W1234

[W0123,W0234] = −ω23�02W0124−�03W0134+ ω02�23W1234

[W0123,W1234] = −ω23�12W0124−�13W0134− ω12�23W0234

[W0124,W0134] = ω14�01W0123+ ω02�14W1234+ ω12�04W0234

[W0124,W0234] = ω24�02W0123−�04W0134+ ω02�24W1234

[W0124,W1234] = ω24�12W0123−�14W0134− ω12�24W0234

[W0134,W0234] = ω24�03W0123+ ω23�04W0124+ ω03�34W1234

[W0134,W1234] = ω24�13W0123+ ω23�14W0124− ω13�34W0234

[W0234,W1234] = ω24�23W0123+ ω23�24W0124+ ω23�34W0134.

(4.8)

4.1.4.N = 5. The three invariants are given by:

C1 = ω15�
2
01 +ω25�

2
02 +ω35�

2
03 +ω45�

2
04 +�2

05
+ω01ω25�

2
12 +ω01ω35�

2
13 +ω01ω45�

2
14 +ω01�

2
15

+ω02ω35�
2
23 +ω02ω45�

2
24 +ω02�

2
25

+ω03ω45�
2
34 +ω03�

2
35

+ω04�
2
45

(4.9)

C2 = ω35ω24W
2
0123+ ω25W

2
0124+ ω24W

2
0125+ ω35W

2
0134+ ω34W

2
0135+W 2

0145

+ω12ω35W
2
0234+ ω12ω34W

2
0235+ ω12W

2
0245+ ω13W

2
0345+ ω02ω35W

2
1234

+ω02ω34W
2
1235+ ω02W

2
1245+ ω03W

2
1345+ ω02ω13W

2
2345 (4.10)

C ≡ W012345= ω24�45W0123− ω23�35W0124+�25W0134−�15W0234+�05W1234.

(4.11)

In the above expressions it can be noticed how all the contractionsωa → 0 are always
well defined and lead to non-trivial results. For the most contracted algebra so0,0,0,0,0(6),
for instance, we get:

C1 = �2
05 C2 = W 2

0145 C = W012345. (4.12)

And for N arbitrary, the Casimirs for this most contracted CK algebra are:

C1 = �2
0N ≡ W 2

0N C2 = W 2
01(N−1)N C3 = W 2

012(N−2)(N−1)N , . . . . (4.13)

In fact, even if the appearance of the factorsωab seems rather haphazard when written
in specific cases, such as in (4.10), they are indeed easily reconstructed from scratch,
without reference to the general expressions (3.24). If here [X] denotes the dimension of
X, dimensional homogeneity of commutation relations requires that [�ab] = [ωab]1/2, so
[W 2

ab] = [ωab], [W 2
a1a2b1b2

] = [ωa1b2][ωa2b1], etc. By simply recalling theW term (4.13)
entering into any Casimirwithout any ωab factor, then the coefficient of any otherW 2 is
unambiguously derived by simply requiring dimensional homogeneity for allW 2 terms in
the Casimirs and recalling that all terms enter with the same global sign there. Signs coming
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from signatures which appear in the standard known cases (in the Minkowski square of the
Pauli–Lubanski vector, for instance), are hidden inside theωab themselves.

4.2. Casimirs for(3+1)-kinematical algebras

After this algebraic description of the structure of the invariants of the CK algebras we focus
on the most important kinematical algebras included in the soω1,ω2,ω3,ω4(5) family. LetH , Pi ,
Ki andJi (i = 1, 2, 3) the usual generators of time translation, space translations, boosts
and spatial rotations, respectively. Under the following identification with the ‘abstract’
generators�ab:

H = �01 Pi = �0i+1 Ki = �1i+1 i = 1, 2, 3

J1 = �34 J2 = −�24 J3 = �23
(4.14)

we can interpret the six CK algebras soω1,ω2,+,+(5) with ω2 6 0 as the Lie algebras of
the groups of motions of different (3+1) spacetime models [16]. Note that we have fixed
the two coefficientsω3 andω4 to +1 (this is a consequence of the space isotropy). The
two remaining ones have a definite physical interpretation:ω1 is the constant curvature
of the spacetime which appears here as the homogeneous space given in (2.10), which
is the quotientX0 = SOω1,ω2,+,+(5)/SOω2,+,+(4), where SOω2,+,+(4) is the subgroup
generated by the subalgebrah0 = 〈Ki, Ji〉: this is the subalgebra of isotopy of a point
in spacetime. Similarly,ω2 is the curvature of the space of time-like lines in spacetime,
X01 = SOω1,ω2,+,+(5)/(SOω1(2)⊗SO+,+(3)), where now SOω1(2)⊗SO+,+(3) is the isotopy
subgroup of a time-like line, generated byh01 = 〈H, Ji〉. This curvature is linked to the
fundamental constantc of relativistic theories asω2 = −1/c2. To make the comparison
easier for these cases, we shall write the two constants involved in the ‘kinematical’
subfamily of CK algebras as:κ ≡ ω1, −1/c2 ≡ ω2.

In this notation the commutation rules (2.2) of soκ,−1/c2,+,+(5) now read:

[Ji, Jj ] = εijkJk [Ji, Pj ] = εijkPk [Ji,Kj ] = εijkKk
[Pi, Pj ] = − κ

c2
εijkJk [Ki,Kj ] = − 1

c2
εijkJk [Pi,Kj ] = − 1

c2
δijH

[H,Pi ] = κKi [H,Ki ] = −Pi [H, Ji ] = 0 i, j, k = 1, 2, 3.

(4.15)

The limit κ → 0 (space-time contraction) gives rise to theflat universes (Minkowski
and Galilei) coming from the curved ones (de Sitter and Newton–Hooke); in terms of the
‘universe radius’R := 1√

κ
or R := 1√−κ , this is usually made asR→∞. The limit c→∞

(speed-space contraction) leads to ‘absolute-time’ spacetimes (Newton–Hooke and Galilei)
coming from ‘relative-time’ ones (de Sitter and Minkowski).

In this context, the Casimir invariants (4.4) and (4.5) adopt the form

C1 = P 2
1 + P 2

2 + P 2
3 −

1

c2
H 2+ κ(K2

1 +K2
2 +K2

3)−
κ

c2
(J 2

1 + J 2
2 + J 2

3 ) (4.16)

C2 = W 2
0123+W 2

0124+W 2
0134−

1

c2
W 2

0234−
κ

c2
W 2

1234 (4.17)
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Table 1. The Casimir invariants of soκ,−1/c2,+,+(5).

Oscillating Newton–Hooke Galilei Expanding Newton–Hooke
(+, 0,+,+)κ = 1, c = ∞ (0, 0,+,+)κ = 0, c = ∞ (−, 0,+,+)κ = −1, c = ∞
t6(so(3)⊕ so(2)) iiso(3) t6(so(3)⊕ so(1, 1))

C1 = P 2
1 + P 2

2 + P 2
3 C1 = P 2

1 + P 2
2 + P 2

3 C1 = P 2
1 + P 2

2 + P 2
3

+K2
1 +K2

2 +K2
3 −K2

1 −K2
2 −K2

3
C2 = W2

0123+W 2
0124+W 2

0134 C2 = W2
0123+W 2

0124+W 2
0134 C2 = W2

0123+W 2
0124+W 2

0134

Anti-de Sitter so(3, 2) Poincaŕe iso(3, 1) de Sitter so(4, 1)
(+,−,+,+)κ = 1, c = 1 (0,−,+,+)κ = 0, c = 1 (−,−,+,+)κ = −1, c = 1

C1 = P 2
1 + P 2

2 + P 2
3 −H 2 C1 = P 2

1 + P 2
2 + P 2

3 −H 2 C1 = P 2
1 + P 2

2 + P 2
3 −H 2

+K2
1 +K2

2 +K2
3 −K2

1 −K2
2 −K2

3
−J 2

1 − J 2
2 − J 2

3 +J 2
1 + J 2

2 + J 2
3

C2 = W2
0123+W 2

0124+W 2
0134 C2 = W2

0123+W 2
0124+W 2

0134 C2 = W2
0123+W 2

0124+W 2
0134

−W2
0234−W 2

1234 −W2
0234 −W2

0234+W 2
1234

where

W0123= − 1

c2
HJ3− P1K2+ P2K1

W0124= 1

c2
HJ2− P1K3+ P3K1

W0134= − 1

c2
HJ1− P2K3+ P3K2

W0234= P1J1+ P2J2+ P3J3

W1234= K1J1+K2J2+K3J3.

(4.18)

In table 1 we display these six kinematical algebras together with their invariants
according to the values of(κ, −1

c2 ,+,+). The limit transitions among them can be clearly
appreciated; note that someW -symbols (4.18) are ‘internally contracted’ in the case of
c = ∞.

5. Concluding remarks

The Casimir invariants play a prominent role in any problem where a Lie algebra and its
enveloping algebra appear. One example of current active interest is the theory of quantum
groups; explicit deformations of theW -symbols can be found in the deformed commutation
relations of the quantum CK algebrasUzso0,ω2,...,ωN (N + 1) with ω1 = 0, and indeed the
study of Casimirs in the classical undeformed algebras we have presented here underlies
the expressions for the deformed Casimirs in [24].

A more classical application concerns the expansions processes which can be seen
as the opposite situation of a contraction limit [25]. While the contractions make some
structure constants of a Lie algebra vanish which therefore gets more Abelian, the expansions
start from a Lie algebra, with some Lie brackets typically equal to zero, and end up with
another less Abelian algebra, which is usually realized as a Lie subalgebra of the universal
enveloping algebra of the initial Lie algebra. The more known transitions of this kind are
the rank-one expansions which allow us to obtain the simple so(p, q) algebras starting from
inhomogeneous iso(p, q); the name rank-one refers to the rank of the homogeneous spaces
behind these expansions (the spaces with a metric of signature(p, q) and constant curvature,
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the expansion going from flat to non-flat spaces) [25, 26]. In our framework this fact is
equivalent to ‘creating’ a non-zero coefficientω1 out of the caseω1 = 0. Technically, these
expansions only involve the quadratic CasimirC1 to get the correct Lie subalgebra in the
enveloping algebra to be expanded (within an irreducible representation). An extension of
these results for high-order expansions would be of great interest. The rank-two expansions
would go fromtr (so(p, q)⊕so(p′, q ′)) (Newton–Hooke algebras) to so(p, q) algebras, that
is, they would introduce curvature into the space of lines, in the same way as the rank-one
expansions go from flat to curved spaces of points. Here the two first Casimir invariants
C1 andC2 should participate, and it is reasonable to guess that the explicit introduction of
the constantsωa may help in the choice of the correct expansion procedure which, as far
as we know, is still unknown for higher rank spaces.
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[19] Azcárraga J A, Herranz F J, Pérez Bueno J C and Santander M 1996 Central exensions of the quasi-orthogonal

Lie algebras, DAMTP-96-86Preprint q-alg/9612021
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